Al-Mo-Ti (Aluminum-Molybdenum-Titanium)

V. Raghavan

The compilation of data on this ternary system by [1995Vil] includes a liquidus projection, a partial solidus projection, partial isothermal sections for Ti-rich alloys at 1100, 1000, 950, 925, 900, 850, 800, 700, and 600 °C, and vertical sections at 5, 10, 15, 20, 25, 30, and 40 wt.% Al, at 0.5 and 5 wt.% Mo and at 7 at.% Ti. In the review by [1993Bud], isothermal sections at 1600, 1300, and 900 °C, partial sections at 700 and 400 °C, and a vertical section at 7 at.% Mo are given. Recently, partial isothermal sections for Ti-poor alloys were reported by [2003Nin] between 1400 and 1100 °C.

Binary Systems

The Al-Mo phase diagram [1997Sau], with an added update for the Al-Mo₃Al₈ region by J.F. Smith (Editor of the

Journal of Phase Equibria and Diffusion), shows the following intermediate phases: MoAl₁₂ (WAl₁₂-type cubic); MoAl₅ (with three modifications); Mo₅Al_{22;} Mo₄Al₁₇; MoAl₄ (monoclinic); Mo_{1 - x}Al_{3 + x} (cubic); MoAl₃ (monoclinic); Mo₃Al₈ (monoclinic); MoAl (body-centered cubic [bcc]); and Mo₃Al (A15, Cr₃Si-type cubic). The updated version of the Al-Ti phase diagram [2005Rag] depicts a number of intermediate phases. TiAl₃ has two crystal modifications: TiAl₃ (high temperature [HT]) (D0₂₂-type tetragonal) forms peritectically at 1387 °C and decomposes eutectoidally at 735 °C. TiAl₃ (low temperature [LT]) (tetragonal) forms at ~950 °C and is stable at low temperatures. Ti₅Al₁₁ is a superstructure based on the AuCu-type tetragonal phase. It forms peritectically at 1416 °C and decomposes eutectoidally at 995 °C to TiAl₂ and TiAl₃ (HT). TiAl₂ (HfGa₂-type tetragonal) forms congruently at

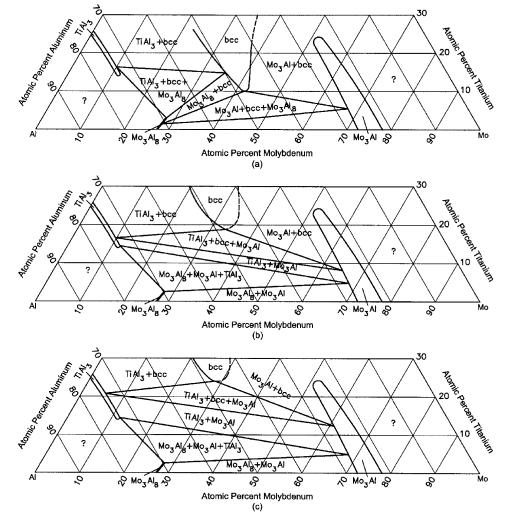
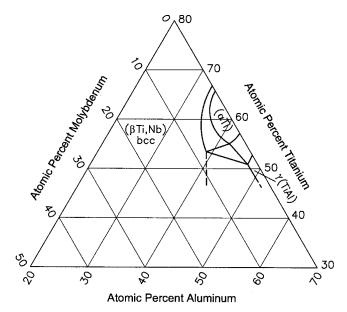


Fig. 1 Al-Mo-Ti partial isothermal sections for Ti-poor alloys at (a) 1300 °C, (b) 1200 °C, and (c) 1100 °C [2003Nin]


Section II: Phase Diagram Evaluations

1215 °C from Ti₅Al₁₁ and is stable at low temperatures. Ti_{1-x}Al_{1+x} (AuCu-type tetragonal) is stable between 1445 and 1170 °C. Ti₃Al₅ is an LT phase that is stable below 810 °C. TiAl, often designated γ , has the L1₀, AuCu-type tetragonal structure and forms peritectically at 1460 °C. (β Ti) (bcc, also denoted β) and liquid undergo a peritectic reaction at 1490 °C to yield (α Ti) (close-packed hexagonal, also denoted α). Ti₃Al, commonly labeled α_2 , has the D0₁₉, Ni₃Sn-type hexagonal structure and forms congruently from (α Ti) at 1176 °C. The Mo-Ti phase diagram [Massalski2] depicts a continuous bcc solid solution between β Ti and Mo over a wide range of temperatures. A miscibility gap occurs in this solution at lower temperatures, with a monotectoid reaction (β Ti) \rightarrow (α Ti) + (Mo) at 695 °C.

Ternary Isothermal Sections

[2003Nin] arc-melted under Ar atmosphere 11 Al-Mo alloys with Ti in the range of 3 to 17 at.%. The samples were annealed at 1400 to 1500 °C for 1 day and were quenched in water. Some quenched samples were isothermally aged at 1150 to 900 °C for 1 to 3 days and were quenched in water. The phase equilibria were studied by x-ray diffraction and scanning electron microscopy with an energy-dispersive spectroscopy attachment. Differential thermal analysis was done at a cooling/heating rate of 10 °C/min. Partial isothermal sections were constructed at 1400, 1300, 1267, 1200, and 1100 °C. The isothermal sections at 1300, 1200, and 1100 °C are redrawn in Fig. 1 to agree with the accepted binary data. The following U-type transition reaction occurs at 1267 °C: Mo₃Al₈ + bcc \leftrightarrow Mo₃Al + TiAl₃. At 1400 °C, the bcc phase originating from the Ti-Mo binary side is close the Al-Mo side but does not make contact with it. This is consistent with the fact that the MoAl (bcc) intermediate phase decomposes eutectoidally at 1470 °C [1997Sau]. It is possible that the bcc phase extends up to the Al-Mo side above this temperature and recedes from this side, as the temperature falls below 1470 °C. [2003Nin] ruled out the possibility of coexistence of two bcc phases of different composition in the temperature range studied by them. The isothermal section at 1600 °C determined by [1988Ere] (reviewed in [1993Bud]) depicts two bcc phases of different composition. The decomposition of the bcc phase containing 13 to 17 at.% Ti results in a lamellar structure, which is characteristic of the Al-Mo eutectoid reaction at 1470 °C. The stabilizing effect of Ti on MoAl enables slower quenching rates to retain this bcc phase and to obtain a finer lamellar structure on subsequent aging [2002Miu, 2003Nin]. [2003Nin] did not find the σ phase (~Al₂MoTi) in the composition and temperature range studied by them. It is probably stable only below the lowest temperature studied by them (1100 °C). Earlier, the σ phase was reported by [1970Han] at 925 °C.

[1994Has] used HT x-ray diffractometry and differential thermal analysis to study the phase equilibria between 1300 and 1100 °C in Mo-poor alloys. The partial isothermal section constructed by them at 1200 °C is redrawn in Fig. 2 to agree with the accepted binary data. The solubility of Mo in (α Ti) and γ is small. Mo acts as a strong bcc stabilizer.

Fig. 2 Al-Mo-Ti partial isothermal section for Mo-poor alloys at 1200 °C [1994Has]

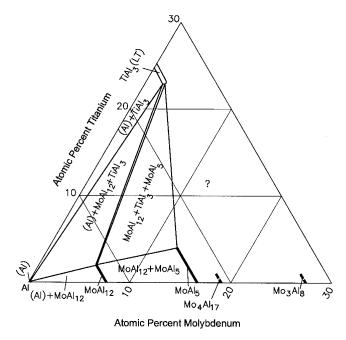


Fig. 3 Al-Mo-Ti partial isothermal section at 497 °C [1994Sok]

With starting metals of 99.9% Al, 99.6% Mo, and 99.5% Ti, [1994Sok] melted 17 Al-rich alloys containing up to 25 at.% each of Mo and Ti in an arc furnace under Ar atmosphere. The alloys were annealed at 497 °C (770 K) for 1000 h and quenched. The phase equilibria were studied with x-ray powder diffraction and metallography. The partial isothermal section determined by [1994Sok] near the Al corner is redrawn in Fig. 3 to agree with the accepted binary data. The binary compound MoAl₃ shown by [1994Sok] is omitted, as this phase decomposes at 818 °C [1997Sau].

Annealing temperature, °C	Phase	Composition, at.%		
		Ti	Al	Мо
1400	bcc (B2) (single phase)	35.7	49.7	14.6
1350	bcc (B2)	36.3	47.5	16.2
	(aTi)	35.8	52.5	11.9
1200	bcc (B2)	35.2	45.7	19.1
	TiAl (γ)	35.5	55.8	8.9
1000	bcc (B2)	36.7	42.1	21.2
	TiAl (γ)	34.0	56.7	9.3
800	bcc (B2)	40.7	37.1	22.2
	$\gamma' (D0_{22})$	33.2	57.4	9.4
	$\gamma''(a)$	25.0	60.8	14.2

Table 1Tie-line and tie-triangle compositions in aTi-50Al-15Mo alloy [1997Che]

TlAl₃ dissolves up to 2 at.% Mo. $MoAl_{12}$ and $MoAl_5$ dissolve up to 2 and 4 at.% Ti, respectively [1994Sok].

Among the other studies, [1997Sin] investigated 12 Molean ternary alloys containing 44 to 50 at.% Al and 2 to 6 at.% Mo. They were heat-treated at 1400 to 1100 °C for 1 to 6 h and were quenched in water. [1997Sin] pointed out that the annealing times that they used were not adequate to establish equilibrium. Tentative partial isothermal sections were drawn at 1400, 1300, 1200, and 1100 °C. At 1400 °C, with increasing Mo content, alloys containing 48 to 50 at.% Al lie successively in the $(\alpha Ti) + \gamma \rightarrow (\alpha Ti) \rightarrow (\alpha Ti) + (\beta Ti)$ \rightarrow (BTi) fields, whereas alloys with 44 to 46 at.% Al pass through $(\alpha Ti) \rightarrow (\alpha Ti) + (\beta Ti) \rightarrow (\beta Ti)$ fields. At 1100 °C, the $(B2 + \gamma)$ mixture dominates. [1997Che] annealed a Ti-50Al-15Mo alloy at 1400, 1350, 1200, 1000, and 800 °C for 1.5, 2, 96, 144, and 504 h, respectively, and guenched it in water. The tie-line and the tie-triangle compositions determined by them as a function of temperature are listed in Table 1.

The stabilizing effect of Mo on the formation of the CsCl-type *B*2 phase in Ti₃Al-based and TiAl-based compositions was studied by [1991Dja], [1993Gro], [1993Tho], and [1998Yi]. First principle calculations of the equilibria between bcc, hexagonal close-packed, *B*2, Ti₃Al, and TiAl structures were reported by [2001Kan] and [2004Alo].

References

- **1970Han:** R.C. Hansen and A. Raman, Alloy Chemistry of σ (β U) Related Phases. III. Sigma Phases with Non-transition Elements, *Z. Metallkd.*, Vol 61, 1970, p 115-120
- **1988Ere:** V.N. Eremenko, S.A. Sukhaya, and L.A. Tertyachenko, Phase Equilibria in the Ti-Al-Mo System at 1600°C, *Tsvetn. Met.*, (No. 4), 1988, p 97-100 (in Russian)

- **1991Dja:** S. Djanarthany, C. Servant, and R. Penelle, Phase Transformations in Ti₃Al and Ti₃Al + Mo Aluminides, *J. Mater. Res.*, Vol 6 (No. 5), 1991, p 969-986
- **1993Bud:** P. Budberg and R. Schmid-Fetzer, Aluminum-Molybdenum-Titanium, *Ternary Alloys*, Vol 7, G. Petzow and G. Effenberg, Ed., VCH Verlagsgesellschaft, Weinheim, Germany, 1993, p 229-238
- **1993Gro:** F. Grosman and J. Sieniawski, Effect of β-Stabilizing Elements and Heating/Cooling Rate on Phase Transformations in Multicomponent Ti Alloys with Constant Aluminum Content, *Arch. Metall.* Vol 38 (No. 1), 1993, p 61-68
- **1993Tho:** M. Thomas and S. Naka, Phase Stability in $Ti_3Al + X$ Base (X = Nb, Mo, V, Ta, Fe) Alloys, *Titanium '92: Sci. Technol. Proc. Symp.*, Vol 2, F.H. Froes and I.L. Caplan, Ed., Miner. Met. Mater. Soc., 1993, p 1243-1250
- 1994Has: K. Hashimoto,Y. Mizuhara, T. Hanamura, and M. Kimura, Phase Stability of Ti-Al-X at High Temperatures, *Microstruct. Prop. Relations Ti Alloys Proc. Harold Margolin Symp.*, S. Ankem and J.A. Hall, Ed., Miner. Met. Mater. Soc., 1994, p 225-234
- **1994Sok:** E.M. Sokolovskaya, E.F. Kazakova, E.I. Poddyakova, and V.K. Portnoi, Isothermal Section of the Al-Mo-Ti System at 770 K, *Vestn. Mosk. Univ. Ser 2: Khim.*, Vol 35 (No. 1), 1994, p 95-97 (in Russian)
- 1995Vil: P. Villars, A. Prince, and H. Okamoto, Al-Mo-Ti, *Handbook of Ternary Alloy Phase Diagrams*, Vol 4, ASM International, 1995, p 4068-4088
- **1997Che:** Z. Chen, I.P. Jones, and C.J. Small, The Structure of the Alloy Ti-50Al-15Mo between 800°C and 1400°C, *Acta Mater.*, Vol 45 (No. 9), 1997, p 3801-3815
- 1997Sau: N. Saunders, The Al-Mo (Aluminum-Molybdenum) System, J. Phase Equilib., Vol 18 (No. 4), 1997, p 370-378
- **1997Sin:** A.K. Singh and D. Banerjee, Transformations in α_2 + γ TiAl Alloys Containing Mo. Part II. Heat Treatment, *Metall. Mater. Trans. A*, Vol 28A, 1997, p 1745-1753
- **1997Vi:** S. Yi, "Phase Equilibria and Development of $\beta + \gamma$ Two-Phase Microstructures in γ Based Ti-Al-Mo Ternary Alloys," Ph.D. dissertation, University of Wisconsin, Madison, 1997
- **2001Kan:** S.Y. Kang and H. Onodera, Analysis of HCP/ $D0_{19}$ and $D0_{19}/L1_0$ Phase Boundaries in Ti-Al-X (X = V, Mn, Nb, Cr, Mo, Ni and Co) Systems by the Cluster Variation Method, *J. Phase Equilib.*, Vol 22 (No. 4), 2001, p 424-430
- 2002Miu: S. Miura, J. Fujinaka, and T. Mohri, Microstructural Control of Al₃Ti Based Alloys Designed by Multicomponent Phase Diagrams, *Process. Fabri. Advanced Materials X, Proc. Symp., 2001,* T.S. Srivatsan and R.A. Varin, Ed., ASM International, 2002, p 287-300
- 2003Nin: R. Nino, J. Fujinaka, H. Shimamura, S. Miura, and T. Mohri, Phase Equilibria and Microstructure Evolution of Al-Mo-Ti Ternary Alloys, *Intermetallics*, Vol 11 (No. 6), 2003, p 611-623
- **2004Alo:** P.R. Alonso and G.H. Rubiolo, Ordering and Phase Separation Around Ti₅₀Al₂₅Mo₂₅ Alloys, *J. Alloys Compd.*, Vol 363, 2004, p 90-98
- 2005Rag: V. Raghavan, Al-Ti (Aluminum-Titanium), J. Phase Equilib. Diffusion, Vol 26 (No. 2), 2005, p 171-172